3.657 \(\int \frac {d f+e f x}{(a+b (d+e x)^2+c (d+e x)^4)^3} \, dx\)

Optimal. Leaf size=153 \[ -\frac {6 c^2 f \tanh ^{-1}\left (\frac {b+2 c (d+e x)^2}{\sqrt {b^2-4 a c}}\right )}{e \left (b^2-4 a c\right )^{5/2}}+\frac {3 c f \left (b+2 c (d+e x)^2\right )}{2 e \left (b^2-4 a c\right )^2 \left (a+b (d+e x)^2+c (d+e x)^4\right )}-\frac {f \left (b+2 c (d+e x)^2\right )}{4 e \left (b^2-4 a c\right ) \left (a+b (d+e x)^2+c (d+e x)^4\right )^2} \]

[Out]

-1/4*f*(b+2*c*(e*x+d)^2)/(-4*a*c+b^2)/e/(a+b*(e*x+d)^2+c*(e*x+d)^4)^2+3/2*c*f*(b+2*c*(e*x+d)^2)/(-4*a*c+b^2)^2
/e/(a+b*(e*x+d)^2+c*(e*x+d)^4)-6*c^2*f*arctanh((b+2*c*(e*x+d)^2)/(-4*a*c+b^2)^(1/2))/(-4*a*c+b^2)^(5/2)/e

________________________________________________________________________________________

Rubi [A]  time = 0.19, antiderivative size = 153, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 5, integrand size = 31, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.161, Rules used = {1142, 1107, 614, 618, 206} \[ -\frac {6 c^2 f \tanh ^{-1}\left (\frac {b+2 c (d+e x)^2}{\sqrt {b^2-4 a c}}\right )}{e \left (b^2-4 a c\right )^{5/2}}+\frac {3 c f \left (b+2 c (d+e x)^2\right )}{2 e \left (b^2-4 a c\right )^2 \left (a+b (d+e x)^2+c (d+e x)^4\right )}-\frac {f \left (b+2 c (d+e x)^2\right )}{4 e \left (b^2-4 a c\right ) \left (a+b (d+e x)^2+c (d+e x)^4\right )^2} \]

Antiderivative was successfully verified.

[In]

Int[(d*f + e*f*x)/(a + b*(d + e*x)^2 + c*(d + e*x)^4)^3,x]

[Out]

-(f*(b + 2*c*(d + e*x)^2))/(4*(b^2 - 4*a*c)*e*(a + b*(d + e*x)^2 + c*(d + e*x)^4)^2) + (3*c*f*(b + 2*c*(d + e*
x)^2))/(2*(b^2 - 4*a*c)^2*e*(a + b*(d + e*x)^2 + c*(d + e*x)^4)) - (6*c^2*f*ArcTanh[(b + 2*c*(d + e*x)^2)/Sqrt
[b^2 - 4*a*c]])/((b^2 - 4*a*c)^(5/2)*e)

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 614

Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[((b + 2*c*x)*(a + b*x + c*x^2)^(p + 1))/((p +
1)*(b^2 - 4*a*c)), x] - Dist[(2*c*(2*p + 3))/((p + 1)*(b^2 - 4*a*c)), Int[(a + b*x + c*x^2)^(p + 1), x], x] /;
 FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0] && LtQ[p, -1] && NeQ[p, -3/2] && IntegerQ[4*p]

Rule 618

Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> Dist[-2, Subst[Int[1/Simp[b^2 - 4*a*c - x^2, x], x]
, x, b + 2*c*x], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 1107

Int[(x_)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_.), x_Symbol] :> Dist[1/2, Subst[Int[(a + b*x + c*x^2)^p, x],
 x, x^2], x] /; FreeQ[{a, b, c, p}, x]

Rule 1142

Int[(u_)^(m_.)*((a_.) + (b_.)*(v_)^2 + (c_.)*(v_)^4)^(p_.), x_Symbol] :> Dist[u^m/(Coefficient[v, x, 1]*v^m),
Subst[Int[x^m*(a + b*x^2 + c*x^(2*2))^p, x], x, v], x] /; FreeQ[{a, b, c, m, p}, x] && LinearPairQ[u, v, x]

Rubi steps

\begin {align*} \int \frac {d f+e f x}{\left (a+b (d+e x)^2+c (d+e x)^4\right )^3} \, dx &=\frac {f \operatorname {Subst}\left (\int \frac {x}{\left (a+b x^2+c x^4\right )^3} \, dx,x,d+e x\right )}{e}\\ &=\frac {f \operatorname {Subst}\left (\int \frac {1}{\left (a+b x+c x^2\right )^3} \, dx,x,(d+e x)^2\right )}{2 e}\\ &=-\frac {f \left (b+2 c (d+e x)^2\right )}{4 \left (b^2-4 a c\right ) e \left (a+b (d+e x)^2+c (d+e x)^4\right )^2}-\frac {(3 c f) \operatorname {Subst}\left (\int \frac {1}{\left (a+b x+c x^2\right )^2} \, dx,x,(d+e x)^2\right )}{2 \left (b^2-4 a c\right ) e}\\ &=-\frac {f \left (b+2 c (d+e x)^2\right )}{4 \left (b^2-4 a c\right ) e \left (a+b (d+e x)^2+c (d+e x)^4\right )^2}+\frac {3 c f \left (b+2 c (d+e x)^2\right )}{2 \left (b^2-4 a c\right )^2 e \left (a+b (d+e x)^2+c (d+e x)^4\right )}+\frac {\left (3 c^2 f\right ) \operatorname {Subst}\left (\int \frac {1}{a+b x+c x^2} \, dx,x,(d+e x)^2\right )}{\left (b^2-4 a c\right )^2 e}\\ &=-\frac {f \left (b+2 c (d+e x)^2\right )}{4 \left (b^2-4 a c\right ) e \left (a+b (d+e x)^2+c (d+e x)^4\right )^2}+\frac {3 c f \left (b+2 c (d+e x)^2\right )}{2 \left (b^2-4 a c\right )^2 e \left (a+b (d+e x)^2+c (d+e x)^4\right )}-\frac {\left (6 c^2 f\right ) \operatorname {Subst}\left (\int \frac {1}{b^2-4 a c-x^2} \, dx,x,b+2 c (d+e x)^2\right )}{\left (b^2-4 a c\right )^2 e}\\ &=-\frac {f \left (b+2 c (d+e x)^2\right )}{4 \left (b^2-4 a c\right ) e \left (a+b (d+e x)^2+c (d+e x)^4\right )^2}+\frac {3 c f \left (b+2 c (d+e x)^2\right )}{2 \left (b^2-4 a c\right )^2 e \left (a+b (d+e x)^2+c (d+e x)^4\right )}-\frac {6 c^2 f \tanh ^{-1}\left (\frac {b+2 c (d+e x)^2}{\sqrt {b^2-4 a c}}\right )}{\left (b^2-4 a c\right )^{5/2} e}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.18, size = 148, normalized size = 0.97 \[ \frac {f \left (\frac {24 c^2 \tan ^{-1}\left (\frac {b+2 c (d+e x)^2}{\sqrt {4 a c-b^2}}\right )}{\sqrt {4 a c-b^2}}+\frac {\left (b^2-4 a c\right ) \left (-b-2 c (d+e x)^2\right )}{\left (a+b (d+e x)^2+c (d+e x)^4\right )^2}+\frac {6 c \left (b+2 c (d+e x)^2\right )}{a+b (d+e x)^2+c (d+e x)^4}\right )}{4 e \left (b^2-4 a c\right )^2} \]

Antiderivative was successfully verified.

[In]

Integrate[(d*f + e*f*x)/(a + b*(d + e*x)^2 + c*(d + e*x)^4)^3,x]

[Out]

(f*(((b^2 - 4*a*c)*(-b - 2*c*(d + e*x)^2))/(a + b*(d + e*x)^2 + c*(d + e*x)^4)^2 + (6*c*(b + 2*c*(d + e*x)^2))
/(a + b*(d + e*x)^2 + c*(d + e*x)^4) + (24*c^2*ArcTan[(b + 2*c*(d + e*x)^2)/Sqrt[-b^2 + 4*a*c]])/Sqrt[-b^2 + 4
*a*c]))/(4*(b^2 - 4*a*c)^2*e)

________________________________________________________________________________________

fricas [B]  time = 1.03, size = 3748, normalized size = 24.50 \[ \text {result too large to display} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*f*x+d*f)/(a+b*(e*x+d)^2+c*(e*x+d)^4)^3,x, algorithm="fricas")

[Out]

[1/4*(12*(b^2*c^3 - 4*a*c^4)*e^6*f*x^6 + 72*(b^2*c^3 - 4*a*c^4)*d*e^5*f*x^5 + 18*(b^3*c^2 - 4*a*b*c^3 + 10*(b^
2*c^3 - 4*a*c^4)*d^2)*e^4*f*x^4 + 24*(10*(b^2*c^3 - 4*a*c^4)*d^3 + 3*(b^3*c^2 - 4*a*b*c^3)*d)*e^3*f*x^3 + 4*(b
^4*c + a*b^2*c^2 - 20*a^2*c^3 + 45*(b^2*c^3 - 4*a*c^4)*d^4 + 27*(b^3*c^2 - 4*a*b*c^3)*d^2)*e^2*f*x^2 + 8*(9*(b
^2*c^3 - 4*a*c^4)*d^5 + 9*(b^3*c^2 - 4*a*b*c^3)*d^3 + (b^4*c + a*b^2*c^2 - 20*a^2*c^3)*d)*e*f*x + 12*(c^4*e^8*
f*x^8 + 8*c^4*d*e^7*f*x^7 + 2*(14*c^4*d^2 + b*c^3)*e^6*f*x^6 + 4*(14*c^4*d^3 + 3*b*c^3*d)*e^5*f*x^5 + (70*c^4*
d^4 + 30*b*c^3*d^2 + b^2*c^2 + 2*a*c^3)*e^4*f*x^4 + 4*(14*c^4*d^5 + 10*b*c^3*d^3 + (b^2*c^2 + 2*a*c^3)*d)*e^3*
f*x^3 + 2*(14*c^4*d^6 + 15*b*c^3*d^4 + a*b*c^2 + 3*(b^2*c^2 + 2*a*c^3)*d^2)*e^2*f*x^2 + 4*(2*c^4*d^7 + 3*b*c^3
*d^5 + a*b*c^2*d + (b^2*c^2 + 2*a*c^3)*d^3)*e*f*x + (c^4*d^8 + 2*b*c^3*d^6 + 2*a*b*c^2*d^2 + (b^2*c^2 + 2*a*c^
3)*d^4 + a^2*c^2)*f)*sqrt(b^2 - 4*a*c)*log((2*c^2*e^4*x^4 + 8*c^2*d*e^3*x^3 + 2*c^2*d^4 + 2*(6*c^2*d^2 + b*c)*
e^2*x^2 + 2*b*c*d^2 + 4*(2*c^2*d^3 + b*c*d)*e*x + b^2 - 2*a*c - (2*c*e^2*x^2 + 4*c*d*e*x + 2*c*d^2 + b)*sqrt(b
^2 - 4*a*c))/(c*e^4*x^4 + 4*c*d*e^3*x^3 + c*d^4 + (6*c*d^2 + b)*e^2*x^2 + b*d^2 + 2*(2*c*d^3 + b*d)*e*x + a))
+ (12*(b^2*c^3 - 4*a*c^4)*d^6 - b^5 + 14*a*b^3*c - 40*a^2*b*c^2 + 18*(b^3*c^2 - 4*a*b*c^3)*d^4 + 4*(b^4*c + a*
b^2*c^2 - 20*a^2*c^3)*d^2)*f)/((b^6*c^2 - 12*a*b^4*c^3 + 48*a^2*b^2*c^4 - 64*a^3*c^5)*e^9*x^8 + 8*(b^6*c^2 - 1
2*a*b^4*c^3 + 48*a^2*b^2*c^4 - 64*a^3*c^5)*d*e^8*x^7 + 2*(b^7*c - 12*a*b^5*c^2 + 48*a^2*b^3*c^3 - 64*a^3*b*c^4
 + 14*(b^6*c^2 - 12*a*b^4*c^3 + 48*a^2*b^2*c^4 - 64*a^3*c^5)*d^2)*e^7*x^6 + 4*(14*(b^6*c^2 - 12*a*b^4*c^3 + 48
*a^2*b^2*c^4 - 64*a^3*c^5)*d^3 + 3*(b^7*c - 12*a*b^5*c^2 + 48*a^2*b^3*c^3 - 64*a^3*b*c^4)*d)*e^6*x^5 + (b^8 -
10*a*b^6*c + 24*a^2*b^4*c^2 + 32*a^3*b^2*c^3 - 128*a^4*c^4 + 70*(b^6*c^2 - 12*a*b^4*c^3 + 48*a^2*b^2*c^4 - 64*
a^3*c^5)*d^4 + 30*(b^7*c - 12*a*b^5*c^2 + 48*a^2*b^3*c^3 - 64*a^3*b*c^4)*d^2)*e^5*x^4 + 4*(14*(b^6*c^2 - 12*a*
b^4*c^3 + 48*a^2*b^2*c^4 - 64*a^3*c^5)*d^5 + 10*(b^7*c - 12*a*b^5*c^2 + 48*a^2*b^3*c^3 - 64*a^3*b*c^4)*d^3 + (
b^8 - 10*a*b^6*c + 24*a^2*b^4*c^2 + 32*a^3*b^2*c^3 - 128*a^4*c^4)*d)*e^4*x^3 + 2*(a*b^7 - 12*a^2*b^5*c + 48*a^
3*b^3*c^2 - 64*a^4*b*c^3 + 14*(b^6*c^2 - 12*a*b^4*c^3 + 48*a^2*b^2*c^4 - 64*a^3*c^5)*d^6 + 15*(b^7*c - 12*a*b^
5*c^2 + 48*a^2*b^3*c^3 - 64*a^3*b*c^4)*d^4 + 3*(b^8 - 10*a*b^6*c + 24*a^2*b^4*c^2 + 32*a^3*b^2*c^3 - 128*a^4*c
^4)*d^2)*e^3*x^2 + 4*(2*(b^6*c^2 - 12*a*b^4*c^3 + 48*a^2*b^2*c^4 - 64*a^3*c^5)*d^7 + 3*(b^7*c - 12*a*b^5*c^2 +
 48*a^2*b^3*c^3 - 64*a^3*b*c^4)*d^5 + (b^8 - 10*a*b^6*c + 24*a^2*b^4*c^2 + 32*a^3*b^2*c^3 - 128*a^4*c^4)*d^3 +
 (a*b^7 - 12*a^2*b^5*c + 48*a^3*b^3*c^2 - 64*a^4*b*c^3)*d)*e^2*x + ((b^6*c^2 - 12*a*b^4*c^3 + 48*a^2*b^2*c^4 -
 64*a^3*c^5)*d^8 + a^2*b^6 - 12*a^3*b^4*c + 48*a^4*b^2*c^2 - 64*a^5*c^3 + 2*(b^7*c - 12*a*b^5*c^2 + 48*a^2*b^3
*c^3 - 64*a^3*b*c^4)*d^6 + (b^8 - 10*a*b^6*c + 24*a^2*b^4*c^2 + 32*a^3*b^2*c^3 - 128*a^4*c^4)*d^4 + 2*(a*b^7 -
 12*a^2*b^5*c + 48*a^3*b^3*c^2 - 64*a^4*b*c^3)*d^2)*e), 1/4*(12*(b^2*c^3 - 4*a*c^4)*e^6*f*x^6 + 72*(b^2*c^3 -
4*a*c^4)*d*e^5*f*x^5 + 18*(b^3*c^2 - 4*a*b*c^3 + 10*(b^2*c^3 - 4*a*c^4)*d^2)*e^4*f*x^4 + 24*(10*(b^2*c^3 - 4*a
*c^4)*d^3 + 3*(b^3*c^2 - 4*a*b*c^3)*d)*e^3*f*x^3 + 4*(b^4*c + a*b^2*c^2 - 20*a^2*c^3 + 45*(b^2*c^3 - 4*a*c^4)*
d^4 + 27*(b^3*c^2 - 4*a*b*c^3)*d^2)*e^2*f*x^2 + 8*(9*(b^2*c^3 - 4*a*c^4)*d^5 + 9*(b^3*c^2 - 4*a*b*c^3)*d^3 + (
b^4*c + a*b^2*c^2 - 20*a^2*c^3)*d)*e*f*x - 24*(c^4*e^8*f*x^8 + 8*c^4*d*e^7*f*x^7 + 2*(14*c^4*d^2 + b*c^3)*e^6*
f*x^6 + 4*(14*c^4*d^3 + 3*b*c^3*d)*e^5*f*x^5 + (70*c^4*d^4 + 30*b*c^3*d^2 + b^2*c^2 + 2*a*c^3)*e^4*f*x^4 + 4*(
14*c^4*d^5 + 10*b*c^3*d^3 + (b^2*c^2 + 2*a*c^3)*d)*e^3*f*x^3 + 2*(14*c^4*d^6 + 15*b*c^3*d^4 + a*b*c^2 + 3*(b^2
*c^2 + 2*a*c^3)*d^2)*e^2*f*x^2 + 4*(2*c^4*d^7 + 3*b*c^3*d^5 + a*b*c^2*d + (b^2*c^2 + 2*a*c^3)*d^3)*e*f*x + (c^
4*d^8 + 2*b*c^3*d^6 + 2*a*b*c^2*d^2 + (b^2*c^2 + 2*a*c^3)*d^4 + a^2*c^2)*f)*sqrt(-b^2 + 4*a*c)*arctan(-(2*c*e^
2*x^2 + 4*c*d*e*x + 2*c*d^2 + b)*sqrt(-b^2 + 4*a*c)/(b^2 - 4*a*c)) + (12*(b^2*c^3 - 4*a*c^4)*d^6 - b^5 + 14*a*
b^3*c - 40*a^2*b*c^2 + 18*(b^3*c^2 - 4*a*b*c^3)*d^4 + 4*(b^4*c + a*b^2*c^2 - 20*a^2*c^3)*d^2)*f)/((b^6*c^2 - 1
2*a*b^4*c^3 + 48*a^2*b^2*c^4 - 64*a^3*c^5)*e^9*x^8 + 8*(b^6*c^2 - 12*a*b^4*c^3 + 48*a^2*b^2*c^4 - 64*a^3*c^5)*
d*e^8*x^7 + 2*(b^7*c - 12*a*b^5*c^2 + 48*a^2*b^3*c^3 - 64*a^3*b*c^4 + 14*(b^6*c^2 - 12*a*b^4*c^3 + 48*a^2*b^2*
c^4 - 64*a^3*c^5)*d^2)*e^7*x^6 + 4*(14*(b^6*c^2 - 12*a*b^4*c^3 + 48*a^2*b^2*c^4 - 64*a^3*c^5)*d^3 + 3*(b^7*c -
 12*a*b^5*c^2 + 48*a^2*b^3*c^3 - 64*a^3*b*c^4)*d)*e^6*x^5 + (b^8 - 10*a*b^6*c + 24*a^2*b^4*c^2 + 32*a^3*b^2*c^
3 - 128*a^4*c^4 + 70*(b^6*c^2 - 12*a*b^4*c^3 + 48*a^2*b^2*c^4 - 64*a^3*c^5)*d^4 + 30*(b^7*c - 12*a*b^5*c^2 + 4
8*a^2*b^3*c^3 - 64*a^3*b*c^4)*d^2)*e^5*x^4 + 4*(14*(b^6*c^2 - 12*a*b^4*c^3 + 48*a^2*b^2*c^4 - 64*a^3*c^5)*d^5
+ 10*(b^7*c - 12*a*b^5*c^2 + 48*a^2*b^3*c^3 - 64*a^3*b*c^4)*d^3 + (b^8 - 10*a*b^6*c + 24*a^2*b^4*c^2 + 32*a^3*
b^2*c^3 - 128*a^4*c^4)*d)*e^4*x^3 + 2*(a*b^7 - 12*a^2*b^5*c + 48*a^3*b^3*c^2 - 64*a^4*b*c^3 + 14*(b^6*c^2 - 12
*a*b^4*c^3 + 48*a^2*b^2*c^4 - 64*a^3*c^5)*d^6 + 15*(b^7*c - 12*a*b^5*c^2 + 48*a^2*b^3*c^3 - 64*a^3*b*c^4)*d^4
+ 3*(b^8 - 10*a*b^6*c + 24*a^2*b^4*c^2 + 32*a^3*b^2*c^3 - 128*a^4*c^4)*d^2)*e^3*x^2 + 4*(2*(b^6*c^2 - 12*a*b^4
*c^3 + 48*a^2*b^2*c^4 - 64*a^3*c^5)*d^7 + 3*(b^7*c - 12*a*b^5*c^2 + 48*a^2*b^3*c^3 - 64*a^3*b*c^4)*d^5 + (b^8
- 10*a*b^6*c + 24*a^2*b^4*c^2 + 32*a^3*b^2*c^3 - 128*a^4*c^4)*d^3 + (a*b^7 - 12*a^2*b^5*c + 48*a^3*b^3*c^2 - 6
4*a^4*b*c^3)*d)*e^2*x + ((b^6*c^2 - 12*a*b^4*c^3 + 48*a^2*b^2*c^4 - 64*a^3*c^5)*d^8 + a^2*b^6 - 12*a^3*b^4*c +
 48*a^4*b^2*c^2 - 64*a^5*c^3 + 2*(b^7*c - 12*a*b^5*c^2 + 48*a^2*b^3*c^3 - 64*a^3*b*c^4)*d^6 + (b^8 - 10*a*b^6*
c + 24*a^2*b^4*c^2 + 32*a^3*b^2*c^3 - 128*a^4*c^4)*d^4 + 2*(a*b^7 - 12*a^2*b^5*c + 48*a^3*b^3*c^2 - 64*a^4*b*c
^3)*d^2)*e)]

________________________________________________________________________________________

giac [B]  time = 0.69, size = 445, normalized size = 2.91 \[ \frac {6 \, c^{2} f \arctan \left (\frac {2 \, c d^{2} f + 2 \, {\left (f x^{2} e + 2 \, d f x\right )} c e + b f}{\sqrt {-b^{2} + 4 \, a c} f}\right ) e^{\left (-1\right )}}{{\left (b^{4} - 8 \, a b^{2} c + 16 \, a^{2} c^{2}\right )} \sqrt {-b^{2} + 4 \, a c}} + \frac {12 \, c^{3} d^{6} f^{5} + 36 \, {\left (f x^{2} e + 2 \, d f x\right )} c^{3} d^{4} f^{4} e + 18 \, b c^{2} d^{4} f^{5} + 36 \, {\left (f x^{2} e + 2 \, d f x\right )}^{2} c^{3} d^{2} f^{3} e^{2} + 36 \, {\left (f x^{2} e + 2 \, d f x\right )} b c^{2} d^{2} f^{4} e + 4 \, b^{2} c d^{2} f^{5} + 20 \, a c^{2} d^{2} f^{5} + 12 \, {\left (f x^{2} e + 2 \, d f x\right )}^{3} c^{3} f^{2} e^{3} + 18 \, {\left (f x^{2} e + 2 \, d f x\right )}^{2} b c^{2} f^{3} e^{2} + 4 \, {\left (f x^{2} e + 2 \, d f x\right )} b^{2} c f^{4} e + 20 \, {\left (f x^{2} e + 2 \, d f x\right )} a c^{2} f^{4} e - b^{3} f^{5} + 10 \, a b c f^{5}}{4 \, {\left (c d^{4} f^{2} + 2 \, {\left (f x^{2} e + 2 \, d f x\right )} c d^{2} f e + b d^{2} f^{2} + {\left (f x^{2} e + 2 \, d f x\right )}^{2} c e^{2} + {\left (f x^{2} e + 2 \, d f x\right )} b f e + a f^{2}\right )}^{2} {\left (b^{4} e - 8 \, a b^{2} c e + 16 \, a^{2} c^{2} e\right )}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*f*x+d*f)/(a+b*(e*x+d)^2+c*(e*x+d)^4)^3,x, algorithm="giac")

[Out]

6*c^2*f*arctan((2*c*d^2*f + 2*(f*x^2*e + 2*d*f*x)*c*e + b*f)/(sqrt(-b^2 + 4*a*c)*f))*e^(-1)/((b^4 - 8*a*b^2*c
+ 16*a^2*c^2)*sqrt(-b^2 + 4*a*c)) + 1/4*(12*c^3*d^6*f^5 + 36*(f*x^2*e + 2*d*f*x)*c^3*d^4*f^4*e + 18*b*c^2*d^4*
f^5 + 36*(f*x^2*e + 2*d*f*x)^2*c^3*d^2*f^3*e^2 + 36*(f*x^2*e + 2*d*f*x)*b*c^2*d^2*f^4*e + 4*b^2*c*d^2*f^5 + 20
*a*c^2*d^2*f^5 + 12*(f*x^2*e + 2*d*f*x)^3*c^3*f^2*e^3 + 18*(f*x^2*e + 2*d*f*x)^2*b*c^2*f^3*e^2 + 4*(f*x^2*e +
2*d*f*x)*b^2*c*f^4*e + 20*(f*x^2*e + 2*d*f*x)*a*c^2*f^4*e - b^3*f^5 + 10*a*b*c*f^5)/((c*d^4*f^2 + 2*(f*x^2*e +
 2*d*f*x)*c*d^2*f*e + b*d^2*f^2 + (f*x^2*e + 2*d*f*x)^2*c*e^2 + (f*x^2*e + 2*d*f*x)*b*f*e + a*f^2)^2*(b^4*e -
8*a*b^2*c*e + 16*a^2*c^2*e))

________________________________________________________________________________________

maple [C]  time = 0.05, size = 2132, normalized size = 13.93 \[ \text {result too large to display} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e*f*x+d*f)/(a+b*(e*x+d)^2+c*(e*x+d)^4)^3,x)

[Out]

3*f/(c*e^4*x^4+4*c*d*e^3*x^3+6*c*d^2*e^2*x^2+4*c*d^3*e*x+b*e^2*x^2+c*d^4+2*b*d*e*x+b*d^2+a)^2*c^3*e^5/(16*a^2*
c^2-8*a*b^2*c+b^4)*x^6+18*f/(c*e^4*x^4+4*c*d*e^3*x^3+6*c*d^2*e^2*x^2+4*c*d^3*e*x+b*e^2*x^2+c*d^4+2*b*d*e*x+b*d
^2+a)^2*e^4*c^3*d/(16*a^2*c^2-8*a*b^2*c+b^4)*x^5+45*f/(c*e^4*x^4+4*c*d*e^3*x^3+6*c*d^2*e^2*x^2+4*c*d^3*e*x+b*e
^2*x^2+c*d^4+2*b*d*e*x+b*d^2+a)^2*c^3*e^3/(16*a^2*c^2-8*a*b^2*c+b^4)*x^4*d^2+9/2*f/(c*e^4*x^4+4*c*d*e^3*x^3+6*
c*d^2*e^2*x^2+4*c*d^3*e*x+b*e^2*x^2+c*d^4+2*b*d*e*x+b*d^2+a)^2*c^2*e^3/(16*a^2*c^2-8*a*b^2*c+b^4)*x^4*b+60*f/(
c*e^4*x^4+4*c*d*e^3*x^3+6*c*d^2*e^2*x^2+4*c*d^3*e*x+b*e^2*x^2+c*d^4+2*b*d*e*x+b*d^2+a)^2*c^3*d^3*e^2/(16*a^2*c
^2-8*a*b^2*c+b^4)*x^3+18*f/(c*e^4*x^4+4*c*d*e^3*x^3+6*c*d^2*e^2*x^2+4*c*d^3*e*x+b*e^2*x^2+c*d^4+2*b*d*e*x+b*d^
2+a)^2*c^2*d*e^2/(16*a^2*c^2-8*a*b^2*c+b^4)*x^3*b+45*f/(c*e^4*x^4+4*c*d*e^3*x^3+6*c*d^2*e^2*x^2+4*c*d^3*e*x+b*
e^2*x^2+c*d^4+2*b*d*e*x+b*d^2+a)^2*c^3*e/(16*a^2*c^2-8*a*b^2*c+b^4)*x^2*d^4+27*f/(c*e^4*x^4+4*c*d*e^3*x^3+6*c*
d^2*e^2*x^2+4*c*d^3*e*x+b*e^2*x^2+c*d^4+2*b*d*e*x+b*d^2+a)^2*c^2*e/(16*a^2*c^2-8*a*b^2*c+b^4)*x^2*b*d^2+5*f/(c
*e^4*x^4+4*c*d*e^3*x^3+6*c*d^2*e^2*x^2+4*c*d^3*e*x+b*e^2*x^2+c*d^4+2*b*d*e*x+b*d^2+a)^2*c^2*e/(16*a^2*c^2-8*a*
b^2*c+b^4)*x^2*a+f/(c*e^4*x^4+4*c*d*e^3*x^3+6*c*d^2*e^2*x^2+4*c*d^3*e*x+b*e^2*x^2+c*d^4+2*b*d*e*x+b*d^2+a)^2*c
*e/(16*a^2*c^2-8*a*b^2*c+b^4)*x^2*b^2+18*f/(c*e^4*x^4+4*c*d*e^3*x^3+6*c*d^2*e^2*x^2+4*c*d^3*e*x+b*e^2*x^2+c*d^
4+2*b*d*e*x+b*d^2+a)^2*c^3*d^5/(16*a^2*c^2-8*a*b^2*c+b^4)*x+18*f/(c*e^4*x^4+4*c*d*e^3*x^3+6*c*d^2*e^2*x^2+4*c*
d^3*e*x+b*e^2*x^2+c*d^4+2*b*d*e*x+b*d^2+a)^2*c^2*d^3/(16*a^2*c^2-8*a*b^2*c+b^4)*x*b+10*f/(c*e^4*x^4+4*c*d*e^3*
x^3+6*c*d^2*e^2*x^2+4*c*d^3*e*x+b*e^2*x^2+c*d^4+2*b*d*e*x+b*d^2+a)^2*c^2*d/(16*a^2*c^2-8*a*b^2*c+b^4)*x*a+2*f/
(c*e^4*x^4+4*c*d*e^3*x^3+6*c*d^2*e^2*x^2+4*c*d^3*e*x+b*e^2*x^2+c*d^4+2*b*d*e*x+b*d^2+a)^2*c*d/(16*a^2*c^2-8*a*
b^2*c+b^4)*x*b^2+3*f/(c*e^4*x^4+4*c*d*e^3*x^3+6*c*d^2*e^2*x^2+4*c*d^3*e*x+b*e^2*x^2+c*d^4+2*b*d*e*x+b*d^2+a)^2
/(16*a^2*c^2-8*a*b^2*c+b^4)/e*c^3*d^6+9/2*f/(c*e^4*x^4+4*c*d*e^3*x^3+6*c*d^2*e^2*x^2+4*c*d^3*e*x+b*e^2*x^2+c*d
^4+2*b*d*e*x+b*d^2+a)^2/(16*a^2*c^2-8*a*b^2*c+b^4)/e*b*c^2*d^4+5*f/(c*e^4*x^4+4*c*d*e^3*x^3+6*c*d^2*e^2*x^2+4*
c*d^3*e*x+b*e^2*x^2+c*d^4+2*b*d*e*x+b*d^2+a)^2/(16*a^2*c^2-8*a*b^2*c+b^4)/e*a*c^2*d^2+f/(c*e^4*x^4+4*c*d*e^3*x
^3+6*c*d^2*e^2*x^2+4*c*d^3*e*x+b*e^2*x^2+c*d^4+2*b*d*e*x+b*d^2+a)^2/(16*a^2*c^2-8*a*b^2*c+b^4)/e*b^2*c*d^2+5/2
*f/(c*e^4*x^4+4*c*d*e^3*x^3+6*c*d^2*e^2*x^2+4*c*d^3*e*x+b*e^2*x^2+c*d^4+2*b*d*e*x+b*d^2+a)^2/(16*a^2*c^2-8*a*b
^2*c+b^4)/e*a*b*c-1/4*f/(c*e^4*x^4+4*c*d*e^3*x^3+6*c*d^2*e^2*x^2+4*c*d^3*e*x+b*e^2*x^2+c*d^4+2*b*d*e*x+b*d^2+a
)^2/(16*a^2*c^2-8*a*b^2*c+b^4)/e*b^3+3*f*c^2/(16*a^2*c^2-8*a*b^2*c+b^4)/e*sum((_R*e+d)/(2*_R^3*c*e^3+6*_R^2*c*
d*e^2+6*_R*c*d^2*e+2*c*d^3+_R*b*e+b*d)*ln(-_R+x),_R=RootOf(_Z^4*c*e^4+4*_Z^3*c*d*e^3+c*d^4+b*d^2+(6*c*d^2*e^2+
b*e^2)*_Z^2+(4*c*d^3*e+2*b*d*e)*_Z+a))

________________________________________________________________________________________

maxima [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*f*x+d*f)/(a+b*(e*x+d)^2+c*(e*x+d)^4)^3,x, algorithm="maxima")

[Out]

Timed out

________________________________________________________________________________________

mupad [B]  time = 3.99, size = 1199, normalized size = 7.84 \[ \frac {\frac {x^2\,\left (e\,f\,b^2\,c+27\,e\,f\,b\,c^2\,d^2+45\,e\,f\,c^3\,d^4+5\,a\,e\,f\,c^2\right )}{16\,a^2\,c^2-8\,a\,b^2\,c+b^4}+\frac {-f\,b^3+4\,f\,b^2\,c\,d^2+18\,f\,b\,c^2\,d^4+10\,a\,f\,b\,c+12\,f\,c^3\,d^6+20\,a\,f\,c^2\,d^2}{4\,e\,\left (16\,a^2\,c^2-8\,a\,b^2\,c+b^4\right )}+\frac {9\,x^4\,\left (10\,f\,c^3\,d^2\,e^3+b\,f\,c^2\,e^3\right )}{2\,\left (16\,a^2\,c^2-8\,a\,b^2\,c+b^4\right )}+\frac {2\,d\,x\,\left (f\,b^2\,c+9\,f\,b\,c^2\,d^2+9\,f\,c^3\,d^4+5\,a\,f\,c^2\right )}{16\,a^2\,c^2-8\,a\,b^2\,c+b^4}+\frac {6\,d\,x^3\,\left (10\,f\,c^3\,d^2\,e^2+3\,b\,f\,c^2\,e^2\right )}{16\,a^2\,c^2-8\,a\,b^2\,c+b^4}+\frac {3\,c^3\,e^5\,f\,x^6}{16\,a^2\,c^2-8\,a\,b^2\,c+b^4}+\frac {18\,c^3\,d\,e^4\,f\,x^5}{16\,a^2\,c^2-8\,a\,b^2\,c+b^4}}{x^2\,\left (6\,b^2\,d^2\,e^2+30\,b\,c\,d^4\,e^2+2\,a\,b\,e^2+28\,c^2\,d^6\,e^2+12\,a\,c\,d^2\,e^2\right )+x^6\,\left (28\,c^2\,d^2\,e^6+2\,b\,c\,e^6\right )+x\,\left (4\,e\,b^2\,d^3+12\,e\,b\,c\,d^5+4\,a\,e\,b\,d+8\,e\,c^2\,d^7+8\,a\,e\,c\,d^3\right )+x^3\,\left (4\,b^2\,d\,e^3+40\,b\,c\,d^3\,e^3+56\,c^2\,d^5\,e^3+8\,a\,c\,d\,e^3\right )+x^5\,\left (56\,c^2\,d^3\,e^5+12\,b\,c\,d\,e^5\right )+x^4\,\left (b^2\,e^4+30\,b\,c\,d^2\,e^4+70\,c^2\,d^4\,e^4+2\,a\,c\,e^4\right )+a^2+b^2\,d^4+c^2\,d^8+c^2\,e^8\,x^8+2\,a\,b\,d^2+2\,a\,c\,d^4+2\,b\,c\,d^6+8\,c^2\,d\,e^7\,x^7}+\frac {6\,c^2\,f\,\mathrm {atan}\left (\frac {\left (b^4\,{\left (4\,a\,c-b^2\right )}^5+16\,a^2\,c^2\,{\left (4\,a\,c-b^2\right )}^5-8\,a\,b^2\,c\,{\left (4\,a\,c-b^2\right )}^5\right )\,\left (x^2\,\left (\frac {36\,c^6\,e^8\,f^2}{a\,{\left (4\,a\,c-b^2\right )}^{9/2}\,\left (16\,a^2\,c^2-8\,a\,b^2\,c+b^4\right )}+\frac {36\,b\,c^4\,f^2\,\left (16\,a^2\,b\,c^4\,e^{10}-8\,a\,b^3\,c^3\,e^{10}+b^5\,c^2\,e^{10}\right )}{a\,e^2\,{\left (4\,a\,c-b^2\right )}^{15/2}\,\left (16\,a^2\,c^2-8\,a\,b^2\,c+b^4\right )}\right )+x\,\left (\frac {72\,c^6\,d\,e^7\,f^2}{a\,{\left (4\,a\,c-b^2\right )}^{9/2}\,\left (16\,a^2\,c^2-8\,a\,b^2\,c+b^4\right )}+\frac {72\,b\,c^4\,f^2\,\left (16\,d\,a^2\,b\,c^4\,e^9-8\,d\,a\,b^3\,c^3\,e^9+d\,b^5\,c^2\,e^9\right )}{a\,e^2\,{\left (4\,a\,c-b^2\right )}^{15/2}\,\left (16\,a^2\,c^2-8\,a\,b^2\,c+b^4\right )}\right )+\frac {36\,c^6\,d^2\,e^6\,f^2}{a\,{\left (4\,a\,c-b^2\right )}^{9/2}\,\left (16\,a^2\,c^2-8\,a\,b^2\,c+b^4\right )}+\frac {36\,b\,c^4\,f^2\,\left (32\,a^3\,c^4\,e^8-16\,a^2\,b^2\,c^3\,e^8+16\,a^2\,b\,c^4\,d^2\,e^8+2\,a\,b^4\,c^2\,e^8-8\,a\,b^3\,c^3\,d^2\,e^8+b^5\,c^2\,d^2\,e^8\right )}{a\,e^2\,{\left (4\,a\,c-b^2\right )}^{15/2}\,\left (16\,a^2\,c^2-8\,a\,b^2\,c+b^4\right )}\right )}{72\,c^6\,e^6\,f^2}\right )}{e\,{\left (4\,a\,c-b^2\right )}^{5/2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((d*f + e*f*x)/(a + b*(d + e*x)^2 + c*(d + e*x)^4)^3,x)

[Out]

((x^2*(5*a*c^2*e*f + b^2*c*e*f + 45*c^3*d^4*e*f + 27*b*c^2*d^2*e*f))/(b^4 + 16*a^2*c^2 - 8*a*b^2*c) + (12*c^3*
d^6*f - b^3*f + 20*a*c^2*d^2*f + 4*b^2*c*d^2*f + 18*b*c^2*d^4*f + 10*a*b*c*f)/(4*e*(b^4 + 16*a^2*c^2 - 8*a*b^2
*c)) + (9*x^4*(10*c^3*d^2*e^3*f + b*c^2*e^3*f))/(2*(b^4 + 16*a^2*c^2 - 8*a*b^2*c)) + (2*d*x*(9*c^3*d^4*f + 5*a
*c^2*f + b^2*c*f + 9*b*c^2*d^2*f))/(b^4 + 16*a^2*c^2 - 8*a*b^2*c) + (6*d*x^3*(10*c^3*d^2*e^2*f + 3*b*c^2*e^2*f
))/(b^4 + 16*a^2*c^2 - 8*a*b^2*c) + (3*c^3*e^5*f*x^6)/(b^4 + 16*a^2*c^2 - 8*a*b^2*c) + (18*c^3*d*e^4*f*x^5)/(b
^4 + 16*a^2*c^2 - 8*a*b^2*c))/(x^2*(6*b^2*d^2*e^2 + 28*c^2*d^6*e^2 + 2*a*b*e^2 + 12*a*c*d^2*e^2 + 30*b*c*d^4*e
^2) + x^6*(28*c^2*d^2*e^6 + 2*b*c*e^6) + x*(4*b^2*d^3*e + 8*c^2*d^7*e + 8*a*c*d^3*e + 12*b*c*d^5*e + 4*a*b*d*e
) + x^3*(4*b^2*d*e^3 + 56*c^2*d^5*e^3 + 8*a*c*d*e^3 + 40*b*c*d^3*e^3) + x^5*(56*c^2*d^3*e^5 + 12*b*c*d*e^5) +
x^4*(b^2*e^4 + 70*c^2*d^4*e^4 + 2*a*c*e^4 + 30*b*c*d^2*e^4) + a^2 + b^2*d^4 + c^2*d^8 + c^2*e^8*x^8 + 2*a*b*d^
2 + 2*a*c*d^4 + 2*b*c*d^6 + 8*c^2*d*e^7*x^7) + (6*c^2*f*atan(((b^4*(4*a*c - b^2)^5 + 16*a^2*c^2*(4*a*c - b^2)^
5 - 8*a*b^2*c*(4*a*c - b^2)^5)*(x^2*((36*c^6*e^8*f^2)/(a*(4*a*c - b^2)^(9/2)*(b^4 + 16*a^2*c^2 - 8*a*b^2*c)) +
 (36*b*c^4*f^2*(b^5*c^2*e^10 - 8*a*b^3*c^3*e^10 + 16*a^2*b*c^4*e^10))/(a*e^2*(4*a*c - b^2)^(15/2)*(b^4 + 16*a^
2*c^2 - 8*a*b^2*c))) + x*((72*c^6*d*e^7*f^2)/(a*(4*a*c - b^2)^(9/2)*(b^4 + 16*a^2*c^2 - 8*a*b^2*c)) + (72*b*c^
4*f^2*(b^5*c^2*d*e^9 - 8*a*b^3*c^3*d*e^9 + 16*a^2*b*c^4*d*e^9))/(a*e^2*(4*a*c - b^2)^(15/2)*(b^4 + 16*a^2*c^2
- 8*a*b^2*c))) + (36*c^6*d^2*e^6*f^2)/(a*(4*a*c - b^2)^(9/2)*(b^4 + 16*a^2*c^2 - 8*a*b^2*c)) + (36*b*c^4*f^2*(
32*a^3*c^4*e^8 + 2*a*b^4*c^2*e^8 - 16*a^2*b^2*c^3*e^8 + b^5*c^2*d^2*e^8 - 8*a*b^3*c^3*d^2*e^8 + 16*a^2*b*c^4*d
^2*e^8))/(a*e^2*(4*a*c - b^2)^(15/2)*(b^4 + 16*a^2*c^2 - 8*a*b^2*c))))/(72*c^6*e^6*f^2)))/(e*(4*a*c - b^2)^(5/
2))

________________________________________________________________________________________

sympy [B]  time = 13.97, size = 1707, normalized size = 11.16 \[ \text {result too large to display} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*f*x+d*f)/(a+b*(e*x+d)**2+c*(e*x+d)**4)**3,x)

[Out]

-3*c**2*f*sqrt(-1/(4*a*c - b**2)**5)*log(2*d*x/e + x**2 + (-192*a**3*c**5*f*sqrt(-1/(4*a*c - b**2)**5) + 144*a
**2*b**2*c**4*f*sqrt(-1/(4*a*c - b**2)**5) - 36*a*b**4*c**3*f*sqrt(-1/(4*a*c - b**2)**5) + 3*b**6*c**2*f*sqrt(
-1/(4*a*c - b**2)**5) + 3*b*c**2*f + 6*c**3*d**2*f)/(6*c**3*e**2*f))/e + 3*c**2*f*sqrt(-1/(4*a*c - b**2)**5)*l
og(2*d*x/e + x**2 + (192*a**3*c**5*f*sqrt(-1/(4*a*c - b**2)**5) - 144*a**2*b**2*c**4*f*sqrt(-1/(4*a*c - b**2)*
*5) + 36*a*b**4*c**3*f*sqrt(-1/(4*a*c - b**2)**5) - 3*b**6*c**2*f*sqrt(-1/(4*a*c - b**2)**5) + 3*b*c**2*f + 6*
c**3*d**2*f)/(6*c**3*e**2*f))/e + (10*a*b*c*f + 20*a*c**2*d**2*f - b**3*f + 4*b**2*c*d**2*f + 18*b*c**2*d**4*f
 + 12*c**3*d**6*f + 72*c**3*d*e**5*f*x**5 + 12*c**3*e**6*f*x**6 + x**4*(18*b*c**2*e**4*f + 180*c**3*d**2*e**4*
f) + x**3*(72*b*c**2*d*e**3*f + 240*c**3*d**3*e**3*f) + x**2*(20*a*c**2*e**2*f + 4*b**2*c*e**2*f + 108*b*c**2*
d**2*e**2*f + 180*c**3*d**4*e**2*f) + x*(40*a*c**2*d*e*f + 8*b**2*c*d*e*f + 72*b*c**2*d**3*e*f + 72*c**3*d**5*
e*f))/(64*a**4*c**2*e - 32*a**3*b**2*c*e + 128*a**3*b*c**2*d**2*e + 128*a**3*c**3*d**4*e + 4*a**2*b**4*e - 64*
a**2*b**3*c*d**2*e + 128*a**2*b*c**3*d**6*e + 64*a**2*c**4*d**8*e + 8*a*b**5*d**2*e - 24*a*b**4*c*d**4*e - 64*
a*b**3*c**2*d**6*e - 32*a*b**2*c**3*d**8*e + 4*b**6*d**4*e + 8*b**5*c*d**6*e + 4*b**4*c**2*d**8*e + x**8*(64*a
**2*c**4*e**9 - 32*a*b**2*c**3*e**9 + 4*b**4*c**2*e**9) + x**7*(512*a**2*c**4*d*e**8 - 256*a*b**2*c**3*d*e**8
+ 32*b**4*c**2*d*e**8) + x**6*(128*a**2*b*c**3*e**7 + 1792*a**2*c**4*d**2*e**7 - 64*a*b**3*c**2*e**7 - 896*a*b
**2*c**3*d**2*e**7 + 8*b**5*c*e**7 + 112*b**4*c**2*d**2*e**7) + x**5*(768*a**2*b*c**3*d*e**6 + 3584*a**2*c**4*
d**3*e**6 - 384*a*b**3*c**2*d*e**6 - 1792*a*b**2*c**3*d**3*e**6 + 48*b**5*c*d*e**6 + 224*b**4*c**2*d**3*e**6)
+ x**4*(128*a**3*c**3*e**5 + 1920*a**2*b*c**3*d**2*e**5 + 4480*a**2*c**4*d**4*e**5 - 24*a*b**4*c*e**5 - 960*a*
b**3*c**2*d**2*e**5 - 2240*a*b**2*c**3*d**4*e**5 + 4*b**6*e**5 + 120*b**5*c*d**2*e**5 + 280*b**4*c**2*d**4*e**
5) + x**3*(512*a**3*c**3*d*e**4 + 2560*a**2*b*c**3*d**3*e**4 + 3584*a**2*c**4*d**5*e**4 - 96*a*b**4*c*d*e**4 -
 1280*a*b**3*c**2*d**3*e**4 - 1792*a*b**2*c**3*d**5*e**4 + 16*b**6*d*e**4 + 160*b**5*c*d**3*e**4 + 224*b**4*c*
*2*d**5*e**4) + x**2*(128*a**3*b*c**2*e**3 + 768*a**3*c**3*d**2*e**3 - 64*a**2*b**3*c*e**3 + 1920*a**2*b*c**3*
d**4*e**3 + 1792*a**2*c**4*d**6*e**3 + 8*a*b**5*e**3 - 144*a*b**4*c*d**2*e**3 - 960*a*b**3*c**2*d**4*e**3 - 89
6*a*b**2*c**3*d**6*e**3 + 24*b**6*d**2*e**3 + 120*b**5*c*d**4*e**3 + 112*b**4*c**2*d**6*e**3) + x*(256*a**3*b*
c**2*d*e**2 + 512*a**3*c**3*d**3*e**2 - 128*a**2*b**3*c*d*e**2 + 768*a**2*b*c**3*d**5*e**2 + 512*a**2*c**4*d**
7*e**2 + 16*a*b**5*d*e**2 - 96*a*b**4*c*d**3*e**2 - 384*a*b**3*c**2*d**5*e**2 - 256*a*b**2*c**3*d**7*e**2 + 16
*b**6*d**3*e**2 + 48*b**5*c*d**5*e**2 + 32*b**4*c**2*d**7*e**2))

________________________________________________________________________________________